Bottom-Enhanced Diapycnal Mixing Driven by Mesoscale Eddies: Sensitivity to Wind Energy Supply

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overlooked Role of Mesoscale Winds in Powering Ocean Diapycnal Mixing

Diapycnal mixing affects the uptake of heat and carbon by the ocean as well as plays an important role in global ocean circulations and climate. In the thermocline, winds provide an important energy source for furnishing diapycnal mixing primarily through the generation of near-inertial internal waves. However, this contribution is largely missing in the current generation of climate models. In...

متن کامل

Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the 2 South China Sea 3 by 4

13 The South China Sea is a marginal basin with a complex circulation influenced by the 14 East Asian Monsoon, river discharge and intricate bathymetry. As a result, both the mesoscale 15 eddy field and the near-inertial energy distribution display large spatial variability and they 16 strongly influence the oceanic transport and mixing. 17 With an ensemble of numerical integrations using a reg...

متن کامل

Phytoplankton primary productivity in the Santa BarbaraChannel: Effects of wind-driven upwelling and mesoscale eddies

[1] The patterns and drivers of phytoplankton primary productivity in the Santa Barbara Channel (SBC) were examined on 16 cruises conducted 3 times each year from 2001 to 2006. Empirical orthogonal function (EOF) analysis revealed 3 modes of variability that explained 89% of the variance in the productivity data set. The first mode, strongest during spring, describes seasonal productivity chang...

متن کامل

Control of lower limb circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer

We develop a simple model of the lower limb of the meridional overturning circulation in the Southern Ocean based on residual mean theory. We hypothesize that the strength of the lower limb (Ψ) is strongly controlled by the magnitude of abyssal diapycnal mixing (κ), and that of mesoscale eddy transfer (K). In particular, we argue that Ψ ∝ √ κK. The scaling and associated theory find support in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physical Oceanography

سال: 2014

ISSN: 0022-3670,1520-0485

DOI: 10.1175/jpo-d-13-0116.1